p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.152C25, C42.134C23, C23.147C24, C4.1152- 1+4, C22.132- 1+4, D4⋊3Q8⋊44C2, Q8⋊3Q8⋊30C2, C4⋊C4.335C23, (C2×C4).142C24, C4⋊Q8.357C22, (C4×D4).257C22, (C2×D4).488C23, (C2×Q8).317C23, (C4×Q8).244C22, C4⋊D4.238C22, C22⋊C4.120C23, (C2×C42).977C22, (C22×C4).411C23, C22⋊Q8.131C22, C2.55(C2×2- 1+4), C42.C2.88C22, C2.63(C2.C25), C42⋊2C2.10C22, C22.58C24⋊4C2, C4.4D4.184C22, C23.37C23⋊56C2, C23.41C23⋊25C2, C22.57C24⋊19C2, C22.35C24⋊24C2, C22.46C24⋊39C2, C42⋊C2.252C22, C22.33C24.4C2, C22.D4.39C22, C23.36C23.34C2, (C2×C42.C2)⋊52C2, (C2×C4⋊C4).728C22, SmallGroup(128,2295)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.152C25
G = < a,b,c,d,e,f,g | a2=b2=g2=1, c2=f2=b, d2=e2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 564 in 456 conjugacy classes, 382 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C4⋊Q8, C4⋊Q8, C2×C42.C2, C23.36C23, C23.37C23, C22.33C24, C22.35C24, C23.41C23, C22.46C24, D4⋊3Q8, Q8⋊3Q8, C22.57C24, C22.58C24, C22.152C25
Quotients: C1, C2, C22, C23, C24, 2- 1+4, C25, C2×2- 1+4, C2.C25, C22.152C25
(1 9)(2 10)(3 11)(4 12)(5 27)(6 28)(7 25)(8 26)(13 32)(14 29)(15 30)(16 31)(17 38)(18 39)(19 40)(20 37)(21 55)(22 56)(23 53)(24 54)(33 63)(34 64)(35 61)(36 62)(41 52)(42 49)(43 50)(44 51)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 50 9 43)(2 44 10 51)(3 52 11 41)(4 42 12 49)(5 47 27 59)(6 60 28 48)(7 45 25 57)(8 58 26 46)(13 64 32 34)(14 35 29 61)(15 62 30 36)(16 33 31 63)(17 54 38 24)(18 21 39 55)(19 56 40 22)(20 23 37 53)
(1 26 9 8)(2 25 10 7)(3 28 11 6)(4 27 12 5)(13 19 32 40)(14 18 29 39)(15 17 30 38)(16 20 31 37)(21 63 55 33)(22 62 56 36)(23 61 53 35)(24 64 54 34)(41 58 52 46)(42 57 49 45)(43 60 50 48)(44 59 51 47)
(1 19 3 17)(2 18 4 20)(5 16 7 14)(6 15 8 13)(9 40 11 38)(10 39 12 37)(21 49 23 51)(22 52 24 50)(25 29 27 31)(26 32 28 30)(33 57 35 59)(34 60 36 58)(41 54 43 56)(42 53 44 55)(45 61 47 63)(46 64 48 62)
(1 25)(2 8)(3 27)(4 6)(5 11)(7 9)(10 26)(12 28)(13 18)(14 40)(15 20)(16 38)(17 31)(19 29)(21 64)(22 35)(23 62)(24 33)(30 37)(32 39)(34 55)(36 53)(41 47)(42 60)(43 45)(44 58)(46 51)(48 49)(50 57)(52 59)(54 63)(56 61)
G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,27)(6,28)(7,25)(8,26)(13,32)(14,29)(15,30)(16,31)(17,38)(18,39)(19,40)(20,37)(21,55)(22,56)(23,53)(24,54)(33,63)(34,64)(35,61)(36,62)(41,52)(42,49)(43,50)(44,51)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,9,43)(2,44,10,51)(3,52,11,41)(4,42,12,49)(5,47,27,59)(6,60,28,48)(7,45,25,57)(8,58,26,46)(13,64,32,34)(14,35,29,61)(15,62,30,36)(16,33,31,63)(17,54,38,24)(18,21,39,55)(19,56,40,22)(20,23,37,53), (1,26,9,8)(2,25,10,7)(3,28,11,6)(4,27,12,5)(13,19,32,40)(14,18,29,39)(15,17,30,38)(16,20,31,37)(21,63,55,33)(22,62,56,36)(23,61,53,35)(24,64,54,34)(41,58,52,46)(42,57,49,45)(43,60,50,48)(44,59,51,47), (1,19,3,17)(2,18,4,20)(5,16,7,14)(6,15,8,13)(9,40,11,38)(10,39,12,37)(21,49,23,51)(22,52,24,50)(25,29,27,31)(26,32,28,30)(33,57,35,59)(34,60,36,58)(41,54,43,56)(42,53,44,55)(45,61,47,63)(46,64,48,62), (1,25)(2,8)(3,27)(4,6)(5,11)(7,9)(10,26)(12,28)(13,18)(14,40)(15,20)(16,38)(17,31)(19,29)(21,64)(22,35)(23,62)(24,33)(30,37)(32,39)(34,55)(36,53)(41,47)(42,60)(43,45)(44,58)(46,51)(48,49)(50,57)(52,59)(54,63)(56,61)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,27)(6,28)(7,25)(8,26)(13,32)(14,29)(15,30)(16,31)(17,38)(18,39)(19,40)(20,37)(21,55)(22,56)(23,53)(24,54)(33,63)(34,64)(35,61)(36,62)(41,52)(42,49)(43,50)(44,51)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,9,43)(2,44,10,51)(3,52,11,41)(4,42,12,49)(5,47,27,59)(6,60,28,48)(7,45,25,57)(8,58,26,46)(13,64,32,34)(14,35,29,61)(15,62,30,36)(16,33,31,63)(17,54,38,24)(18,21,39,55)(19,56,40,22)(20,23,37,53), (1,26,9,8)(2,25,10,7)(3,28,11,6)(4,27,12,5)(13,19,32,40)(14,18,29,39)(15,17,30,38)(16,20,31,37)(21,63,55,33)(22,62,56,36)(23,61,53,35)(24,64,54,34)(41,58,52,46)(42,57,49,45)(43,60,50,48)(44,59,51,47), (1,19,3,17)(2,18,4,20)(5,16,7,14)(6,15,8,13)(9,40,11,38)(10,39,12,37)(21,49,23,51)(22,52,24,50)(25,29,27,31)(26,32,28,30)(33,57,35,59)(34,60,36,58)(41,54,43,56)(42,53,44,55)(45,61,47,63)(46,64,48,62), (1,25)(2,8)(3,27)(4,6)(5,11)(7,9)(10,26)(12,28)(13,18)(14,40)(15,20)(16,38)(17,31)(19,29)(21,64)(22,35)(23,62)(24,33)(30,37)(32,39)(34,55)(36,53)(41,47)(42,60)(43,45)(44,58)(46,51)(48,49)(50,57)(52,59)(54,63)(56,61) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,27),(6,28),(7,25),(8,26),(13,32),(14,29),(15,30),(16,31),(17,38),(18,39),(19,40),(20,37),(21,55),(22,56),(23,53),(24,54),(33,63),(34,64),(35,61),(36,62),(41,52),(42,49),(43,50),(44,51),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,50,9,43),(2,44,10,51),(3,52,11,41),(4,42,12,49),(5,47,27,59),(6,60,28,48),(7,45,25,57),(8,58,26,46),(13,64,32,34),(14,35,29,61),(15,62,30,36),(16,33,31,63),(17,54,38,24),(18,21,39,55),(19,56,40,22),(20,23,37,53)], [(1,26,9,8),(2,25,10,7),(3,28,11,6),(4,27,12,5),(13,19,32,40),(14,18,29,39),(15,17,30,38),(16,20,31,37),(21,63,55,33),(22,62,56,36),(23,61,53,35),(24,64,54,34),(41,58,52,46),(42,57,49,45),(43,60,50,48),(44,59,51,47)], [(1,19,3,17),(2,18,4,20),(5,16,7,14),(6,15,8,13),(9,40,11,38),(10,39,12,37),(21,49,23,51),(22,52,24,50),(25,29,27,31),(26,32,28,30),(33,57,35,59),(34,60,36,58),(41,54,43,56),(42,53,44,55),(45,61,47,63),(46,64,48,62)], [(1,25),(2,8),(3,27),(4,6),(5,11),(7,9),(10,26),(12,28),(13,18),(14,40),(15,20),(16,38),(17,31),(19,29),(21,64),(22,35),(23,62),(24,33),(30,37),(32,39),(34,55),(36,53),(41,47),(42,60),(43,45),(44,58),(46,51),(48,49),(50,57),(52,59),(54,63),(56,61)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2- 1+4 | 2- 1+4 | C2.C25 |
kernel | C22.152C25 | C2×C42.C2 | C23.36C23 | C23.37C23 | C22.33C24 | C22.35C24 | C23.41C23 | C22.46C24 | D4⋊3Q8 | Q8⋊3Q8 | C22.57C24 | C22.58C24 | C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 6 | 4 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Matrix representation of C22.152C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 2 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 | 1 | 4 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 | 1 | 4 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,4,0,3,0,0,0,0,0,0,0,1,0,0,0,0,2,2,3,4,0,0,0,0,0,4,0,0],[0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,1,4,2,0,0,0,0,0,3,0,0],[0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,1,3,0,0,0,0,0,0,0,1,0,0,0,0,2,2,3,4,0,0,0,0,0,1,0,0],[0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2,3,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;
C22.152C25 in GAP, Magma, Sage, TeX
C_2^2._{152}C_2^5
% in TeX
G:=Group("C2^2.152C2^5");
// GroupNames label
G:=SmallGroup(128,2295);
// by ID
G=gap.SmallGroup(128,2295);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,232,1430,723,184,2019,570,248,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=g^2=1,c^2=f^2=b,d^2=e^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations